H theorem, regularization, and boundary conditions for linearized 13 moment equations.
نویسندگان
چکیده
An H theorem for the linearized Grad 13 moment equations leads to regularizing constitutive equations for higher fluxes and to a complete set of boundary conditions. Solutions for Couette and Poiseuille flows show good agreement with direct simulation Monte Carlo calculations. The Knudsen minimum for the relative mass flow rate is reproduced.
منابع مشابه
Regularization and Boundary Conditions for the 13 Moment Equations
We summarize our recent contributions to the development of macroscopic transport equations for rarefied gas flows. A combination of the ChapmanEnskog expansion and Grad’s moment method, termed as the order of magnitude method, yields the regularized 13 moment equations (R13 equations) which are of super-Burnett order. A complete set of boundary conditions is derived from the boundary condition...
متن کاملKinetic schemes and boundary conditions for moment equations
A numerical scheme for moment equations of kinetic theory, due to LeTallec & Perlat, is considered for the calculation of stationary heat transfer in the Grad 13 moment system and linearized extended thermodynamics of 14 moments. It is shown that the required distance of grid points must be considerably smaller than the mean free path. Thus, the kinetic scheme is useful only in the case of larg...
متن کاملRegularization of Grad’s 13 Moment Equations: Derivation and Linear Analysis
A new closure for Grad’s 13 moment equations is presented that adds terms of SuperBurnett order to the balances of pressure deviator and heat flux vector. The additional terms are derived from equations for higher moments by means of the distribution function for 13 moments. The resulting system of equations contains the Burnett and Super-Burnett equations when expanded in a series in the Knuds...
متن کاملThe existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions
In this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. The differential operator is taken in the Riemann-Liouville sense. Applying the Schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system D^{alpha}_{0+}x(t)=fleft(t,y(t),D^{p}_{0+}y(t)right), t in (0,...
متن کاملPost-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques
In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 99 1 شماره
صفحات -
تاریخ انتشار 2007